

São José dos Campos - SP - Brasil

SEMINÁRIO - FONTES RENOVÁVEIS DE ENERGIA NA AVIAÇÃO

REALIZAÇÃO

APOIO INSTITUCIONAL

PATROCÍNIO

Projeto VE ITAIPU/KWO

Ações e Resultados

Fontes Renováveis de Energia na Aviação 10/05/2010

Antonio Otelo Cardoso

Diretor Técnico Executivo - Itaipu Binacional Coord. Geral do Comitê Gestor - Projeto VE

Produzindo Local

Pensando Global

Publicação: Julho de 2007

Poluidores

A revolução verde ajudou a alimentar os

países em desenvolvimento, da metade ao final do século XX. Mas a fome

continua a flagelar os países mais pobres, especialmente na África, com agricultura tendo manejo inadequado do solo conduzindo a degradação e

salinização da terra.

Das florestas exauridas à agonia dos recifes, sinais de esgotamento Degelo dos polos pontilham o globo. Mesmo nos A grande quantidade de gelo que flui ao mar, das grandes geleiras E.U.A., com seu ambiente ao sul da Groenlândia, quase dobrou de 1995 a 2005, devido ao relativamente limpo, as emissões aquecimento global. O aumento pode conduzir a elevação do excessivas de carbono alimentam o nivel do mar e ao aumento di tempestades e secas severas. 1.48 aquecimento global. Leste Europe Europeu e antiga URSS carbono pela queima de América LEGENDA do Norte Cidades/urbanizações 11 milhões Florestas perenes Florestas sazonais Desmatamento na Amazônia Recifes de corais M Alta risco 11.8 milhões 0,28 cerrado/pastagem 0.17 Daca - Banglad Restinga/semi-árido Terras áridas América Central e 18,1 milhões Áreas urbanas com mais de 10 milhões de habitantes Emissões de Carbono Lagos - Nigéria 13,4 milhões 18.1 milhões Oceano Pacifico Desmatamento Oceano Atlântico Oceano Indico Seca / desertificação Recifes ameaçados Superpopulação Se a India não reduzir seu crescimento demográfico em 2050 ultrapassará a China como a nação mais Secas severas continuam a flagetar nações equatoriais na África, e a desencadear incêndios espontáneos, sem acima das médias nos E.U.A. no final de 2005 e inicio de 2006. Aquecimento Antártico ALIMENTO ÁGUA POPULAÇÃO / SAÚDE BIODIVERSIDADE CLIMA **ENERGIA**

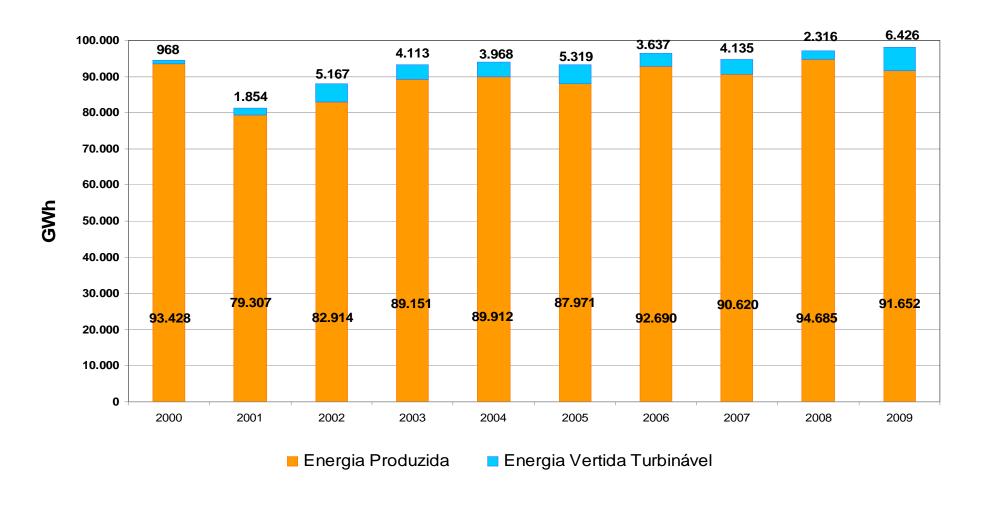
> O uso de água potável aumenta ano a ano, entretanto, o acesso à suas fontes é desigual e poderá produzir competição e conflitos entre nações. Se as calotas polares continuarem a derreter, um grave problema do século XXI, poderá ser o excesso de água, e

não a falta dela.

A destruição de florestas ajudou a causar o maior surto de extinção de espécies desde de que o dinossauros desapareceram devido ao impacto de um asteróide, há 65 milhões de anos. Um relatório de 2006 liga a extinção de espécies de sapos da América Central,

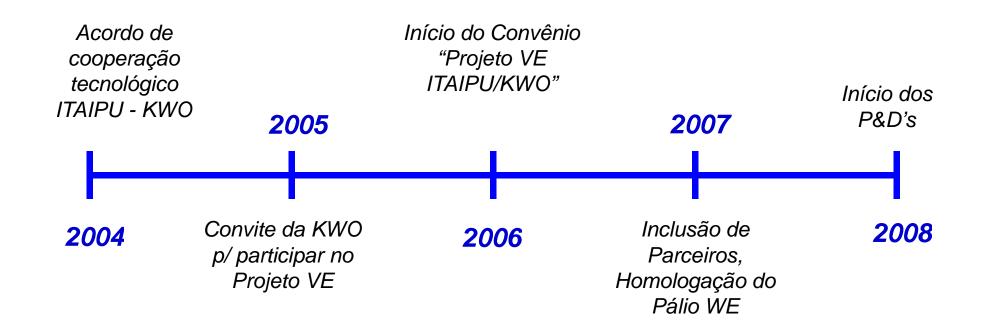
à emissão de gases provenientes de combustíveis fósseis.

A expectativa de vida está aumentando em todo o globo, exceto na África, onde a AIDS e outras doenças infecciosas oneram o país. Em meados do século, baixas taxas de natalidade poderão equilibrar a população global.

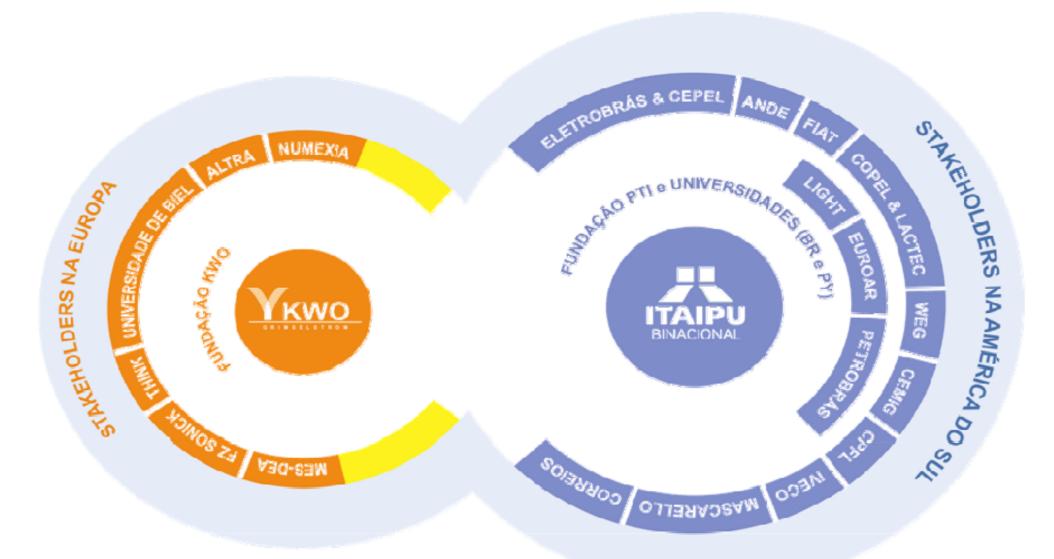

A retirada dos produtos químicos como os clorofluorcarbonos, determinado pelo pacto global de 1989, ajudará a reduzir o buraco na camada de ozônio, mas a queima de combustíveis fósseis continuará aquecendo o planeta.

A dependência humana continua depositada nos combustíveis fósseis. que emitem o dióxido de carbono e são extremamente prejudiciais ao clima do planeta. A busca por combustíveis alternativos será um tema dominante da ciência do século XXI.

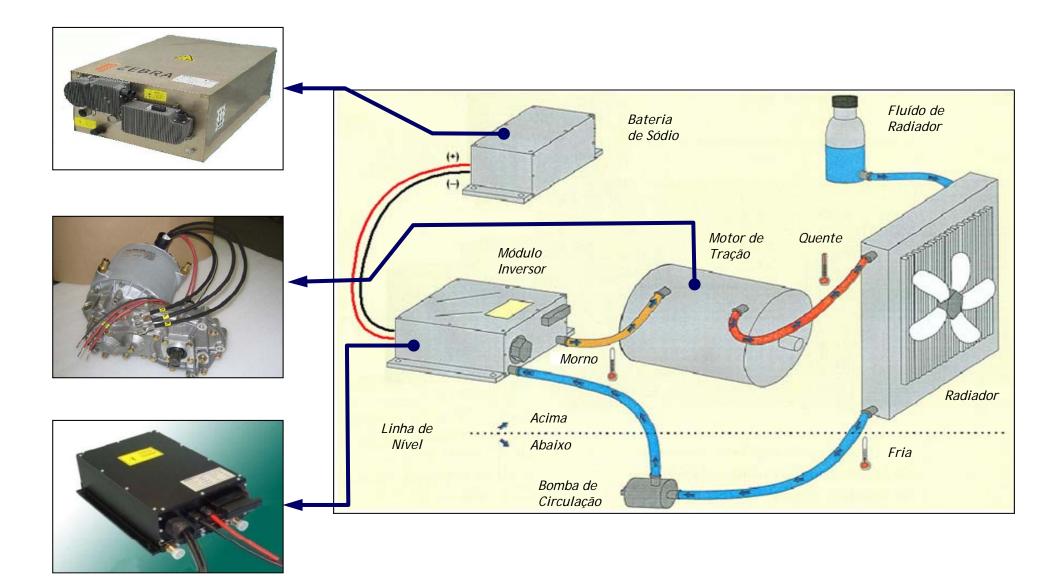
Energia Produzida e Energia Vertida Turbinável 2000 a 2009



Recorde de Produção em 2008 - 94.685 GWh

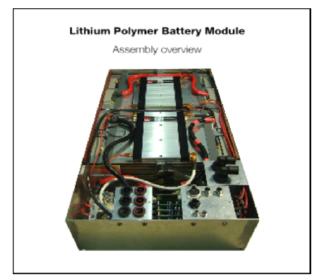

Histórico

Stakeholders

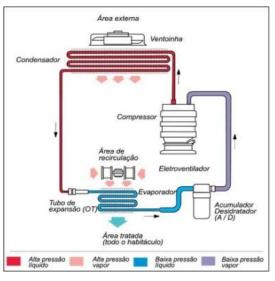


Principais Componentes do VE

Principais Componentes


Propostas de Desenvolvimento

do Projeto VE



Propostas de Desenvolvimento

Baterias

Ar condicionado

Motores e Inversores

Monitoramento e Navegação

Cabos e Conectores

Infra-estrutura

Resultados / Produtos

Desenvolvidos em ITAIPU

- Pálio Weekend Elétrico
- Daily Elétrico
- Granmini Elétrico

PROTÓTIPO DE CARRO ELÉTRICO

Grupo de Trabalho: FIAT / MES-DEA / ITAIPU

Pálio Weekend Elétrico

Bateria de Sódio: 19,2 kWh

Motor: 15 kW (~20 cv)

Autonomia: 110 km Velocidade max.: 100 km/h

Tempo de Recarga: 8 h

Aplicação: Uso Urbano

Homologado no DENATRAN como Veículo Elétrico

PROTÓTIPO DE CARRO ELÉTRICO

Grupo de Trabalho: FIAT / MES-DEA / ITAIPU

PROTÓTIPO DE CAMINHÃO ELÉTRICO PARA PEQUENAS CARGAS

Grupo de Trabalho: IVECO / ITAIPU

Daily Elétrico

Bateria de Sódio: 3 x 21,2 kWh Motor: 40 kW (~54 cv)

Autonomia: 100 km

Velocidade max.: 70 km/h (c/carga)

85 km/h (s/carga)

Peso Bruto Total: 5,5 ton Carga Útil: 2,5 ton

Tempo de Recarga: 8 h

Aplicação: Uso Urbano/Rural

Pálio Weekend Elétrico

PROTÓTIPO DE CAMINHÃO ELÉTRICO PARA PEQUENAS CARGAS Grupo de Trabalho: ITAIPU/FPTI/IVECO/WEG

O caminhão leve Iveco Daily Elétrico, recebeu o prêmio "Destaque Tecnológico" do Congresso SAE Brasil 2009 (Sociedade de Engenheiros da Mobilidade).

PROTÓTIPO DE MINI-ÔNIBUS ELÉTRICO

Grupo de Trabalho: MASCARELLO / IVECO / EUROAR / ITAIPU

Granmini Elétrico

Bateria de Sódio: 4 x 21,2 kWh Motor: 40 kW (~54 cv)

Autonomia: 100 km Velocidade max.: 85 km/h

Capacidade: 16+1 pessoas

Tempo de Recarga: 8 h

Ar Condicionador : Elétrico

Aplicação: Uso Urbano

MOTOR ELÉTRICO E MÓDULO INVERSOR

Grupo de Trabalho: WEG / ITAIPU

Primeiro Protótipo WEG para o Projeto VE (Fiat Pálio)

- 1. Motor específico para tração veicular;
- 2. Inversor de freqüência com características específicas para uso com baterias avançadas (ZEBRA, Polímeros de Lítio, etc).

SISTEMA DE MONITORAMENTO E NAVEGAÇÃO

Grupo de Trabalho: FPTI / ITAIPU

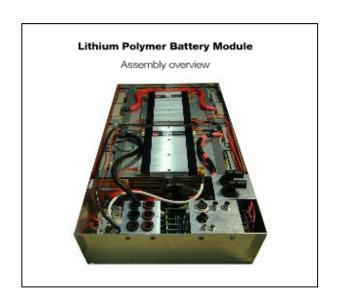
- 1. Sistema Embarcado: Monitora, armazena e transmite via GSM;
 - Tensão e Corrente Elétrica;
 - Velocidade, Aceleração e Percurso (coordenadas);
 - Temperaturas (motor, inversor, bateria);
- 2. Estação central: análise, armazenamento e monitoramento on-line.

POSTO DE ABASTECIMENTO (ELETROPOSTO)

Grupo de Trabalho: COPEL / LACTEC / CPFL / ITAIPU

Etapas:

- 1. Projeto/design de eletroposto;
- Identificação métodos de tarifação (em andam.);
- Estudo a viabilidade do uso de conector indutivo para transferência de energia (em andam.);
- 4. Implementação de proteção contra fraude (em andam.)



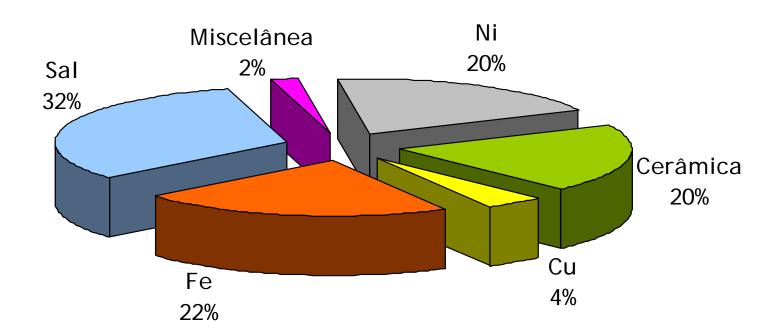
BATERIA DE POLÍMEROS DE LÍTIO (Transferência de Tecnologia)

Grupo de Trabalho: ITAIPU/BIEL

Conhecimentos Adquiridos:

- 1. Projeto da Bateria (com células disponíveis comercialmente)
- 2. Sistema de Gerenciamento da Bateria (BMS)
- 3. Integração, montagem elétrica e mecânica
- Manutenção e testes;

Principal Desafio:


Desenvolvimento de Baterias Avançadas

Bateria ZEBRA (Sódio) Meio ambiente e Segurança

- As baterias ZEBRA são praticamente 100% recicláveis;
- Os metais são facilmente utilizados na indústria;
- Matéria-prima abundante no planeta;
- Não possui efeito memória (não vicia).

Por que Sódio e Não Lítio?

Argumentos da Aloxsys:

- Quantidade de lítio é insuficiente para atender grandes demandas.
- Sódio é abundante no planeta.
- Baterias de lítio são boas para pequenas aplicações.
- Baterias de sódio atenderiam grandes sistemas.

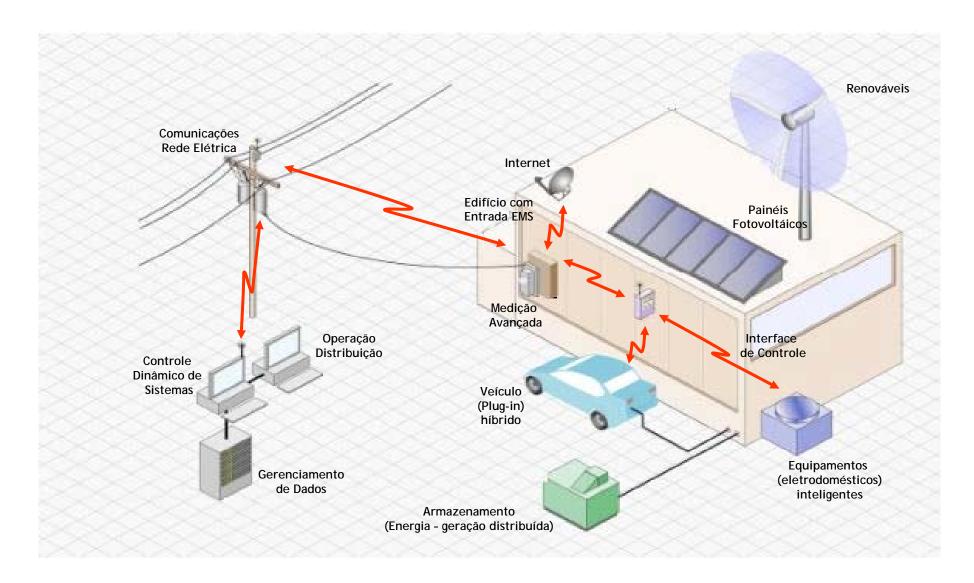
	Frequencia sobre a Terra	Produção [t/a]	Energia [Wh/g]	Preço [\$/kg]	Custo [\$/kWh]
Litio (Li)	65 ppm	10.000	11,70	45,00	3,80
Sódio (Na)	28.300 ppm	muito grande	3,16	0,75	0,24
Níquel (Ni)	15.000 ppm	1.000.000	Reservas provadas		
			>200 milhões ton. + reciclagem		

Outros Desafios

Ações Paralelas ao Desenvolvimento da Bateria de Sódio

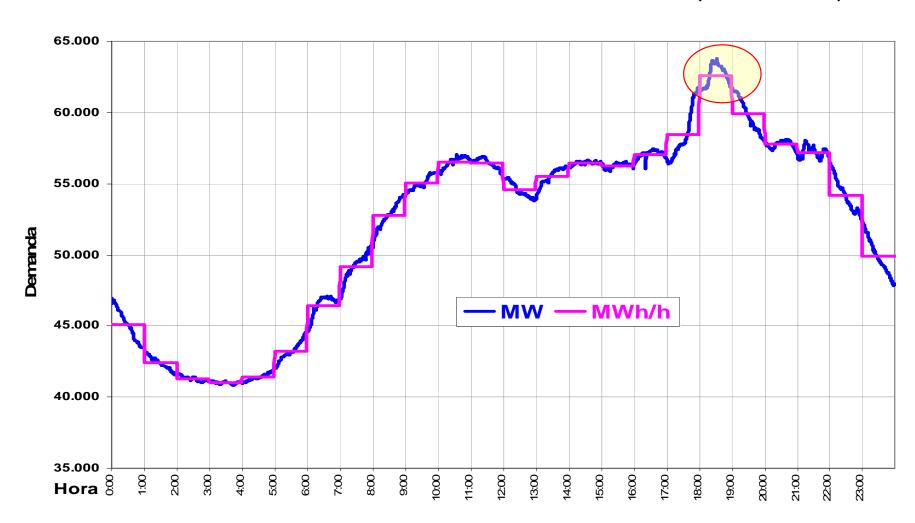
- 1. Powertrain Elétrico
 - Motor de alta performance
 - Eletrônica de potência
 - Caixa de redução
- Veículo Híbrido
- 3. Projeto de Chassi e Estrutura para VE
- 4. Desenvolvimento com Supercapacitores

Premissa: Desenvolvimento focado para uso urbano

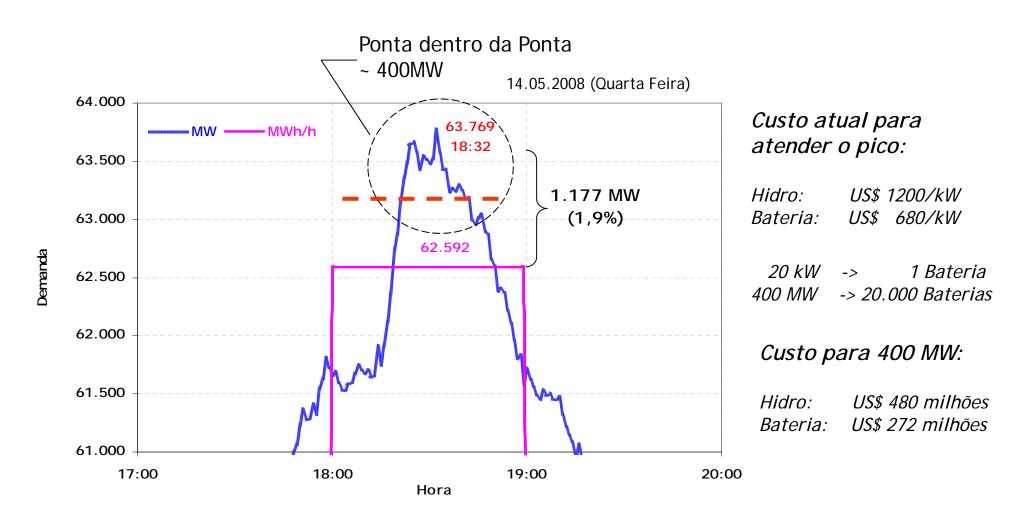


Veículos Elétricos, Setor Elétrico e Baterias Avançadas

Visão de Futuro: Smart Grid


Fonte: EPRI/2007 - Electric Power Research Institute, Inc.

Consumo - Curva de Carga do SIN


14.05.2008 (Quarta Feira)

Consumo - Curva de Carga do SIN

VE's de Consumidores: Custo Zero para o Setor Elétrico

Baterias de Sódio Estacionárias

Aplicações:

- Linearização da Curva de Carga (Load Leveling)
- Qualidade de Energia (Power Quality)
- Controle Automático de Geração (AGC)
- Estabilização de Parque Eólico
- Complementação p/ Sist. de Geração Distribuída (Energias Renováveis)

TEPCO's Ohito Substation (Japan)

48MWh, 6MW de pico (NAS System)

Fonte: Electric Power Research Institute (EPRI)

Baterias de Sódio Estacionárias: Proposta de Aplicação para Fernando de Noronha

Energia de marés (COPPE)

Energia solar

4 MWh /2 MW

Energia eólica

Fontes Alternativas

FONTES ALTERNATIVAS Solar

Grupo de Trabalho: ITAIPU

Estudos:

- 1. Painel solar integrado à rede;
- 2. Bateria ZEBRA integrado à rede com painel solar;
- 3. VE conectado à rede:
 - como carga
 - como no-break

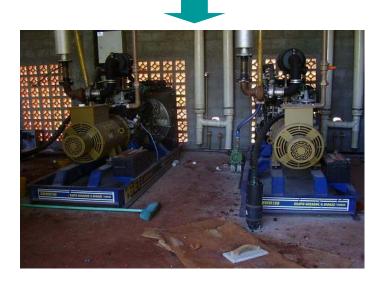
FONTES ALTERNATIVAS Biogás

	Protótipo	Potência liberada pela Copel (1)	Potência de geração atual	Geração de energia elétrica (kWh/dia)	Energia elétrica evitada (kWh/dia)	Excedente (kWh/dia) (2)
1	Colombari	32	32	384	230	154
2	Star Milk	32	32	768	768	0
3	ETE Ouro Verde	20	10	10	10	0
4	ICooperativa Lar	160	80	240	240	0
5	Unidade Produtora de Leitões Cooperativa Lar	240	140	2240	2240	0
6	Unidade Industrial de Vegetais Cooperativa Lar (3)	40	0	0	0	0

Observações

- (1) Conforme chamada pública de compra de Energia Elétrica CP005/2008
- (2) Energia elétrica excedente vendida para Copel, no caso dos protótipos com valor excedente igual a 0 (zero); o consumo de energia elétrica do protótipo é maior que a capacidade de geração
- (3) Protótipo em fase de implantação, até então não apresenta geração de energia elétrica

FONTES ALTERNATIVAS Biogás



Painel para geração distribuída

Segurança e proteção para geradores de pequeno porte (BT) e redes.

Veículos Elétricos & Aeroportos

Sistema de Transporte Elétrico entre Terminais de Aeroportos

International Terminal D and Grand Hyatt DFW Dallas / Fort Worth International Airport

Skylink

Sistema de Transporte Elétrico entre o Centro das Cidades e os Aeroportos

China: Maglev

Sistema de Transporte Elétrico: Uso Interno

Sistema de Transporte Elétrico: Reboque

VOLK Electric Tow Tractor product line N Towing up to 80.000 kg

B400e: electric aircraft pushback tractor up to B757 and A320

A320 B757

Sistema de Transporte Elétrico: Reboque

Bulk Cargo Loader

Commander 15i

UES-2 (electric powered): self-propelled passenger step

Anexos

SISTEMA DE TROCA DE BATERIA (Engate Rápido)

Grupo de Trabalho: ITAIPU

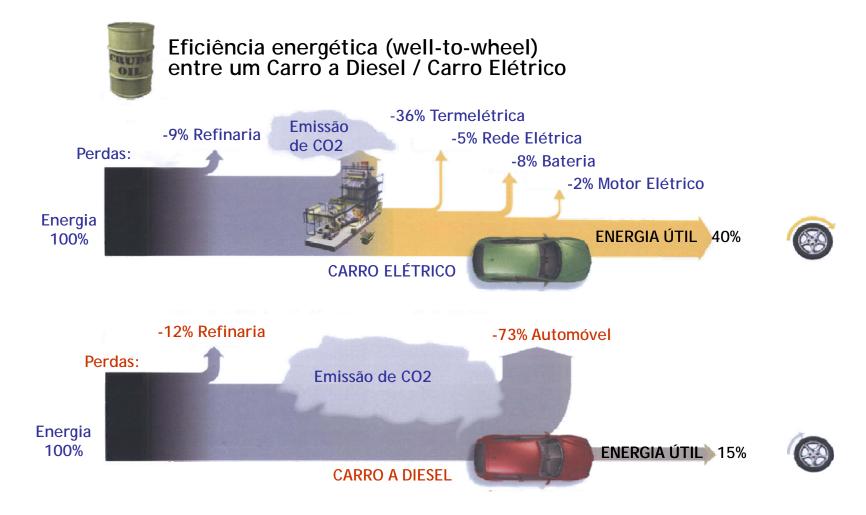
TESTES: 700 km com 6 Baterias

Viagem: Foz do Iguaçu - Assunção

Assunção - Foz do Iguaçu

Data: 27/Outubro/2009

Veloc. Média: 80 km/h


Engate Rápido: Troca em 2 min

Análise de Eficiência: Diesel vs. Elétrico É preferível usar diesel numa usina termelétrica

do que colocar no tanque do carro!

Custo da energia, com tarifa residencial, para cada 100 km rodados: ~ US\$ 3,00



É preferível usar *diesel* em uma usina termelétrica do que colocar no tanque de um carro!

Quantos quilômetros podem ser percorridos com um barril de óleo cru?

VE's e Baterias

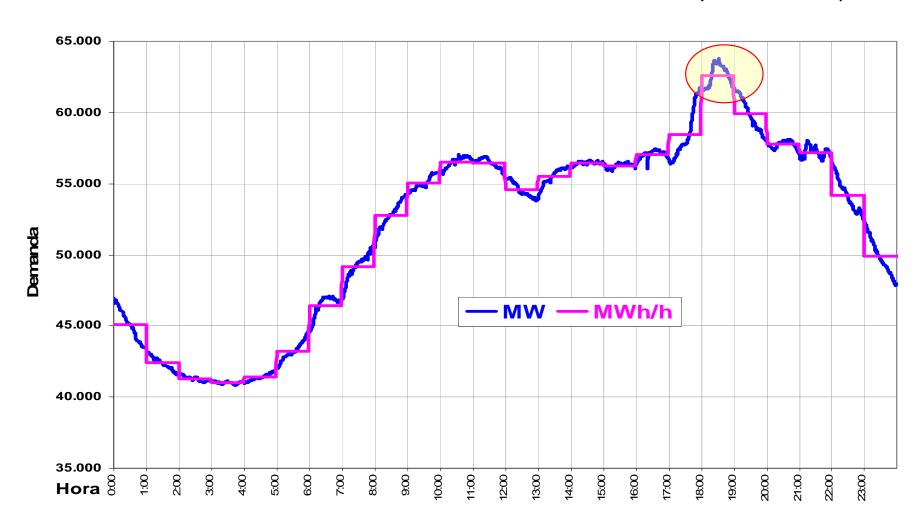
VE parado

Recarregando a partir da rede ou de outras fontes

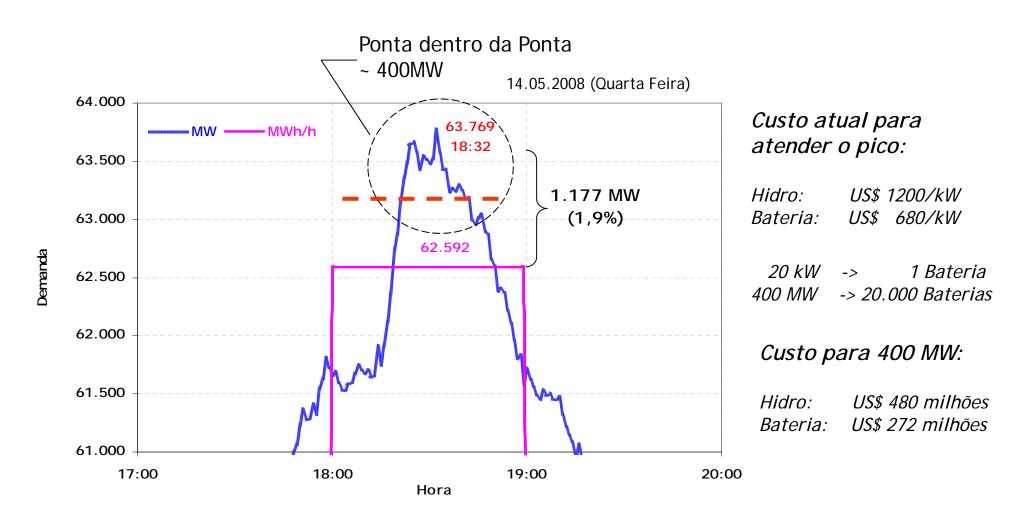
Falta da rede

VE atuando como No-Break

Horário de ponta


VE fornecendo energia à rede

Consumo - Curva de Carga do SIN


14.05.2008 (Quarta Feira)

Consumo - Curva de Carga do SIN

VE's de Consumidores: Custo Zero para o Setor Elétrico

Qual seria o impacto no setor de energia se toda a produção nacional de automóveis fosse de VE's ?

Referências

	Mundial	Nacional	Automóveis
Frota	1 bilhão	60 milhões	30 milhões

- Produção Nacional de Automóveis em 2008: ~ 3 milhões /ano
- Brasileiros rodam em média 54 km/dia.
- Americanos rodam em média 60 km/dia.

Fonte: EPRI, DENATRAN, ANFAVEA, Globo.com

Considerações

- ➤ Tecnologia atual (2009) usada no Palio Weekend;
- >01 (um) VE rodando 60 km/dia e consome: ~ 10 kWh /dia
- > Consumo de Energia Elétrica do Brasil em 2008 : 384,46 TWh

Produção Anual	Automóveis	Energia (kWh)	Dias	Perdas no Sistema (%)	Consumo (TWh)
100%	3 milhões	10	365	13	12,37
10%	300 mil	10	365	13	1,23

- > Portanto, representaria aumento no consumo energia :
 - 100% VE \rightarrow 3,22%
 - $10\% VE \rightarrow 0.32\%$

Alguns Tipos de Baterias

	Características				Para bateria de 20 kWh (*)		
Tipo	Densidade de Energia [Wh/kg]	Densidade de Potência [W/kg]	Custo (*) [\$/Wh]	Ciclos	\$	kW	kg
Chumbo-Ácido	33	180	0,4	200-300	8.000	109	606
Li-lon (MnO2)	95	1800	0,5	500-1000	10.000	379	211
ZEBRA	136	160	0,6	1500-3000	12.000	24	147
Li-lon (CoO2)	157	760	0,8	500-1000	16.000	97	127
Li-lon (FePO4)	108	3000	1,3	2000	26.000	556	185
NiMH	54	1000	1,6	300-500	32.000	370	370

- (*) Valores Estimados: em US\$
 - considera apenas a bateria (células)
 - não considera sistema de gerenciamento /controle da bateria

Fonte: Universidade de Berna, Suiça - Seminários